Classical mechanics, developed by Newton, forms the foundation of our everyday understanding of motion. It assumes that time flows uniformly for all observers and space is fixed and absolute. In this framework, forces equal mass times acceleration, and velocities simply add together. These principles work perfectly for objects moving at everyday speeds.
Classical mechanics faced a major crisis when the Michelson-Morley experiment showed that light travels at exactly the same speed for all observers, regardless of their motion. This contradicted the fundamental assumption that velocities should add together. Maxwell's equations predicted this constant speed of light, but it seemed impossible according to classical physics. This puzzle demanded a completely new understanding of space and time.
相对论与经典力学的最大区别在于对时空的根本认识。经典力学认为时间是绝对的,空间也是绝对的,它们彼此独立。而爱因斯坦的相对论则揭示了时空是相对的、统一的,甚至可以弯曲。此外,经典力学中速度可以无限叠加,而相对论确立了光速的恒定性,这导致了质量与能量等价的著名公式E等于mc平方。
时间膨胀是相对论最令人震惊的预言之一。当物体高速运动时,其时间流逝会变慢。时间膨胀公式显示,运动时钟的时间等于静止时钟时间乘以洛伦兹因子γ。当速度接近光速时,时间几乎停止。这与经典力学中时间绝对不变的观念完全不同,是两种理论最根本的差异之一。
相对论的另外两个重要效应是质能等价和长度收缩。著名的E等于mc平方公式表明质量和能量是等价的,可以相互转换。这在经典力学中是不可想象的,因为质量和能量被认为是完全独立的概念。此外,高速运动的物体在运动方向上会发生长度收缩,而在经典力学中长度是绝对不变的。这些效应共同构成了相对论与经典力学的根本差异。