You’re all set — your build and tests passed. Now it depends on what you want to do next. Pick one: 1) Try OCR on a real image (Node.js) - In a new folder (your app), install the lib: - mkdir my-ocr && cd my-ocr - npm init -y - npm i tesseract.js - Create demo.mjs: - import { createWorker } from 'tesseract.js'; const run = async () => { const worker = await createWorker('eng', undefined, { logger: m => console.log(m) }); // optional progress const { data: { text } } = await worker.recognize('https://tesseract.projectnaptha.com/img/eng_bw.png'); // or a local path like 'C:/path/to/image.png' console.log('RESULT:\n', text); await worker.terminate(); }; run(); - Run it: - node demo.mjs 2) Quick test in the browser (no bundler) - Make an index.html: - - Open it in your browser and check the console. 3) Run the included examples from the repo you cloned - Start the dev server: - npm start - Open this in your browser: - http://localhost:3000/examples/browser/basic-efficient.html - Try other example pages under /examples too. 4) Build the distributables - npm run build - Outputs go to dist/ (tesseract.min.js and worker.min.js) 5) Contribute a change - Make your edits in src/ - Run: - npm run lint - npm run test - Commit on a new branch and open a PR on GitHub. Extras you might want soon - Different language: const worker = await createWorker('chi_sim'); // or 'eng+spa' - Get JSON block/word data (v6 defaults to text only): - const ret = await worker.recognize(img, {}, { blocks: true }); - console.log(ret.data.blocks); - Parallelize multiple images: - Use createScheduler and multiple workers. Tell me which path you want to take (Node script, browser page, examples, or contributing), and I’ll walk you through it step-by-step. explain to me in detail using scaffolding method n oso explain all the terms i cant understand

视频信息