#include #define K 3 #define TRAIN_SAMPLES 50 #define TEST_SAMPLES 10 #define FEATURES 4 #define NUM_CLASSES 3 #define FIXED_POINT_SHIFT 16 #define INT32_MAX 0x7FFFFFFF typedef int32_t fixed16_16_t; #define F_LIT(f) ((fixed16_16_t)((f) * (1 << FIXED_POINT_SHIFT))) // ---------- Console Output ---------- void putchar(char c) { asm volatile ( "mv a0, %0\n" "li a7, 11\n" "ecall" : : "r"(c) : "a0", "a7" ); } void print_str(const char* s) { while (*s) putchar(*s++); } void print_nl() { putchar('\n'); } void print_int(int val) { char buf[12]; int i = 10; buf[11] = '\0'; if (val == 0) { putchar('0'); return; } int neg = 0; if (val < 0) { neg = 1; val = -val; } while (val && i) { buf[i--] = '0' + (val % 10); val /= 10; } if (neg) buf[i--] = '-'; print_str(&buf[i + 1]); } // ---------- Fixed-Point Math ---------- static inline fixed16_16_t fixed_add(fixed16_16_t a, fixed16_16_t b) { return a + b; } static inline fixed16_16_t fixed_sub(fixed16_16_t a, fixed16_16_t b) { return a - b; } static inline fixed16_16_t fixed_mul(fixed16_16_t a, fixed16_16_t b) { return (fixed16_16_t)(((int64_t)a * b) >> FIXED_POINT_SHIFT); } // ---------- Training & Test Data ---------- static const fixed16_16_t training_data[TRAIN_SAMPLES][FEATURES] = { {F_LIT(5.1), F_LIT(3.5), F_LIT(1.4), F_LIT(0.2)}, {F_LIT(4.9), F_LIT(3.0), F_LIT(1.4), F_LIT(0.2)}, {F_LIT(4.7), F_LIT(3.2), F_LIT(1.3), F_LIT(0.2)}, {F_LIT(4.6), F_LIT(3.1), F_LIT(1.5), F_LIT(0.2)}, {F_LIT(5.0), F_LIT(3.6), F_LIT(1.4), F_LIT(0.2)}, {F_LIT(5.4), F_LIT(3.9), F_LIT(1.7), F_LIT(0.4)}, {F_LIT(4.6), F_LIT(3.4), F_LIT(1.4), F_LIT(0.3)}, {F_LIT(5.0), F_LIT(3.4), F_LIT(1.5), F_LIT(0.2)}, {F_LIT(4.4), F_LIT(2.9), F_LIT(1.4), F_LIT(0.2)}, {F_LIT(4.9), F_LIT(3.1), F_LIT(1.5), F_LIT(0.1)}, {F_LIT(5.4), F_LIT(3.7), F_LIT(1.5), F_LIT(0.2)}, {F_LIT(4.8), F_LIT(3.4), F_LIT(1.6), F_LIT(0.2)}, {F_LIT(4.8), F_LIT(3.0), F_LIT(1.4), F_LIT(0.1)}, {F_LIT(4.3), F_LIT(3.0), F_LIT(1.1), F_LIT(0.1)}, {F_LIT(5.8), F_LIT(4.0), F_LIT(1.2), F_LIT(0.2)}, {F_LIT(5.7), F_LIT(4.4), F_LIT(1.5), F_LIT(0.4)}, {F_LIT(7.0), F_LIT(3.2), F_LIT(4.7), F_LIT(1.4)}, {F_LIT(6.4), F_LIT(3.2), F_LIT(4.5), F_LIT(1.5)}, {F_LIT(6.9), F_LIT(3.1), F_LIT(4.9), F_LIT(1.5)}, {F_LIT(5.5), F_LIT(2.3), F_LIT(4.0), F_LIT(1.3)}, {F_LIT(6.5), F_LIT(2.8), F_LIT(4.6), F_LIT(1.5)}, {F_LIT(5.7), F_LIT(2.8), F_LIT(4.5), F_LIT(1.3)}, {F_LIT(6.3), F_LIT(3.3), F_LIT(4.7), F_LIT(1.6)}, {F_LIT(4.9), F_LIT(2.4), F_LIT(3.3), F_LIT(1.0)}, {F_LIT(6.6), F_LIT(2.9), F_LIT(4.6), F_LIT(1.3)}, {F_LIT(5.2), F_LIT(2.7), F_LIT(3.9), F_LIT(1.4)}, {F_LIT(5.0), F_LIT(2.0), F_LIT(3.5), F_LIT(1.0)}, {F_LIT(5.9), F_LIT(3.0), F_LIT(4.2), F_LIT(1.5)}, {F_LIT(6.0), F_LIT(2.2), F_LIT(4.0), F_LIT(1.0)}, {F_LIT(6.1), F_LIT(2.9), F_LIT(4.7), F_LIT(1.4)}, {F_LIT(6.3), F_LIT(3.3), F_LIT(6.0), F_LIT(2.5)}, {F_LIT(5.8), F_LIT(2.7), F_LIT(5.1), F_LIT(1.9)}, {F_LIT(7.1), F_LIT(3.0), F_LIT(5.9), F_LIT(2.1)}, {F_LIT(6.3), F_LIT(2.9), F_LIT(5.6), F_LIT(1.8)}, {F_LIT(6.5), F_LIT(3.0), F_LIT(5.8), F_LIT(2.2)}, {F_LIT(7.6), F_LIT(3.0), F_LIT(6.6), F_LIT(2.1)}, {F_LIT(4.9), F_LIT(2.5), F_LIT(4.5), F_LIT(1.7)}, {F_LIT(7.3), F_LIT(2.9), F_LIT(6.3), F_LIT(1.8)}, {F_LIT(6.7), F_LIT(2.5), F_LIT(5.8), F_LIT(1.8)}, {F_LIT(7.2), F_LIT(3.6), F_LIT(6.1), F_LIT(2.5)}, {F_LIT(6.2), F_LIT(2.8), F_LIT(4.8), F_LIT(1.8)}, {F_LIT(6.1), F_LIT(3.0), F_LIT(4.9), F_LIT(1.8)}, {F_LIT(6.4), F_LIT(2.8), F_LIT(5.6), F_LIT(2.1)}, {F_LIT(7.2), F_LIT(3.0), F_LIT(5.8), F_LIT(1.6)}, {F_LIT(7.4), F_LIT(2.8), F_LIT(6.1), F_LIT(1.9)}, {F_LIT(7.9), F_LIT(3.8), F_LIT(6.4), F_LIT(2.0)}, {F_LIT(6.4), F_LIT(2.8), F_LIT(5.6), F_LIT(2.2)}, }; static const int training_labels[TRAIN_SAMPLES] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,1,1,1,1,1,1, 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 }; static const fixed16_16_t test_data[TEST_SAMPLES][FEATURES] = { {F_LIT(5.0), F_LIT(3.3), F_LIT(1.4), F_LIT(0.2)}, {F_LIT(6.0), F_LIT(2.7), F_LIT(5.1), F_LIT(1.6)}, {F_LIT(6.8), F_LIT(3.2), F_LIT(5.9), F_LIT(2.3)}, {F_LIT(4.8), F_LIT(3.1), F_LIT(1.6), F_LIT(0.2)}, {F_LIT(5.6), F_LIT(3.0), F_LIT(4.5), F_LIT(1.5)}, {F_LIT(6.7), F_LIT(3.1), F_LIT(5.6), F_LIT(2.4)}, {F_LIT(5.1), F_LIT(3.8), F_LIT(1.9), F_LIT(0.4)}, {F_LIT(6.0), F_LIT(3.0), F_LIT(4.8), F_LIT(1.8)}, {F_LIT(5.5), F_LIT(2.4), F_LIT(3.8), F_LIT(1.1)}, {F_LIT(6.3), F_LIT(2.5), F_LIT(5.0), F_LIT(1.9)} }; static const int expected_labels[TEST_SAMPLES] = {0,2,2,0,1,2,0,2,1,2}; int predicted_labels[TEST_SAMPLES] = {0}; // ---------- Core Algorithm ---------- static fixed16_16_t euclidean_distance_squared(const fixed16_16_t* a, const fixed16_16_t* b) { fixed16_16_t total = 0; for (int i = 0; i < FEATURES; ++i) { fixed16_16_t d = fixed_sub(a[i], b[i]); total = fixed_add(total, fixed_mul(d, d)); } return total; } static int find_majority_class(const int* neighbor_labels) { int counts[NUM_CLASSES] = {0}; for (int i = 0; i < K; ++i) counts[neighbor_labels[i]]++; int majority = 0, max = 0; for (int i = 0; i < NUM_CLASSES; ++i) { if (counts[i] > max) { max = counts[i]; majority = i; } } return majority; } void k_nearest_neighbors() { for (int i = 0; i < TEST_SAMPLES; ++i) { fixed16_16_t neighbor_distances[K]; int neighbor_indices[K], neighbor_labels[K]; for (int k = 0; k < K; ++k) { neighbor_distances[k] = INT32_MAX; neighbor_indices[k] = -1; } for (int j = 0; j < TRAIN_SAMPLES; ++j) { fixed16_16_t dist = euclidean_distance_squared(test_data[i], training_data[j]); for (int k = 0; k < K; ++k) { if (dist < neighbor_distances[k]) { for (int s = K - 1; s > k; --s) { neighbor_distances[s] = neighbor_distances[s - 1]; neighbor_indices[s] = neighbor_indices[s - 1]; } neighbor_distances[k] = dist; neighbor_indices[k] = j; break; } } } for (int k = 0; k < K; ++k) neighbor_labels[k] = training_labels[neighbor_indices[k]]; predicted_labels[i] = find_majority_class(neighbor_labels); } } // ---------- Entry ---------- int main() { k_nearest_neighbors(); print_str("\n--- Predictions ---\n"); int correct = 0; for (int i = 0; i < TEST_SAMPLES; ++i) { print_str("Sample "); print_int(i); print_str(": Predicted "); print_int(predicted_labels[i]); print_str(", Expected "); print_int(expected_labels[i]); print_nl(); if (predicted_labels[i] == expected_labels[i]) correct++; } int accuracy = (correct * 100) / TEST_SAMPLES; print_str("Accuracy: "); print_int(accuracy); print_str("%\n"); while (1) {} return 0; } **Situation** Our team is working on a machine learning project and needs a comprehensive understanding of the implementation of a K-Nearest Neighbors (KNN) Classifier in C programming language. **Task** Provide a detailed, line-by-line explanation of the attached C code for the KNN Classifier that breaks down: - The algorithmic logic - Key functions and their purposes - Data structures used - Critical implementation details - How the classifier works step-by-step **Objective** Ensure all team members have a uniform, deep understanding of the KNN Classifier implementation, enabling collaborative development and potential future modifications. **Knowledge** - KNN is a non-parametric, supervised machine learning algorithm - The algorithm classifies data points based on proximity to nearest neighbors - Requires understanding of distance calculation, voting mechanisms, and data representation - Implementation in C requires manual memory management and algorithmic precision **Additional Instructions** - Use clear, technical language accessible to software engineers - Explain both the theoretical concept and practical implementation - Highlight any unique or complex aspects of the C implementation - Break down the code into logical sections with explanations - Point out potential optimization opportunities or algorithmic considerations Note: Since no actual code was attached in the input, the explanation would require the specific code to be provided for a comprehensive breakdown, which is attached as text above.

视频信息